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Abstract—This paper examines the effect of fiber and interfacial layer morphologies on thermal
stress fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily
layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected
to spatially uniform temperature changes. The fiber is modeled as a layered material with isotropic
or orthotropic, elastic layers whereas the surrounding matrix, including interfacial layers, is treated
as a strain-hardening, elasto—plastic, von Mises solid with temperature-dependent parameters. The
solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the
prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally
developed for stress analysis of multilayered elastic media. Examples are provided that illustrate
how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at
the fiber-matrix interface affect the evolution of residual stresses in SiC-Ti composites during
fabrication cool-down.

INTRODUCTION

Modeling the thermal response of metal matrix composites continues to be an active and
important area of research in composite mechanics. This is motivated, largely, by current
efforts to develop a new generation of propulsion engines and structural components for
use in a high-speed civil transport for the next century. Metal matrix composites are viable
candidates for such applications because of their potentially superior properties at elevated
temperatures. Large temperature changes however, either due to processing or actual in-
service exposure, lead to high internal thermal stresses caused by a large mismatch in the
thermal expansion coefficients of the fiber and matrix phases. These thermal stresses can be
sufficiently large to yield the matrix during the fabrication process and/or subsequent
service, altering the initial yield surfaces and subsequent hardening response (Aboudi, 1985;
Fujita et al., 1990). Radial cracking of the matrix at the fiber-matrix interface caused by
circumferential stresses induced during fabrication cool-down has also been observed in
certain types of material systems such as silicon carbide-titanium aluminide composites
(SiC/Ti-Al) (Brindley et al., 1990).

In addition to radial cracking, longitudinal and circumferential cracks at the fiber—
matrix interface are also a source of concern (Johnson et al., 1990 ; Brindley et al., 1992).
The longitudinal cracks can be particularly detrimental as they may result in fiber fractures,
directly affecting the composite’s strength. The interfacial cracks or debonds, observed in
MMC:s such as SiC-Ti in the presence of relatively low transverse stresses, can enhance
matrix plasticity, leading to large plastic strains under biaxial loading and thus potential
loss of structural stability (Lissenden et al., 1992a,b).

A number of micromechanical approaches have been employed to model the thermal
response of metal matrix composites in order to understand the influence of the constituent
properties on the evolution of thermal stresses and on the overall effective response. These
range from simple models utilizing combinations of the Reuss and Voigt hypotheses for
the state of stress and strain in the fiber and matrix phases, and composite cylinder models,
to periodic fiber array models based on approximate or rigorous geometrical and analytical
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assumptions (Dvorak, 1990 ; Aboudi, 1991). In the majority of these approaches, the fiber
is treated as homogeneous, elastic and isotropic or transversely isotropic.

Most recently, microstructures of different types of fibers used in advanced composites
have been taken into account in modeling the thermal response. Avery and Herakovich
(1986), for instance, have investigated the evolution of residual stresses in polymeric matrix
composites with radially and circumferentially orthotropic, homogeneous, graphite fibers
using the composite cylinder assemblage model. Warwick and Clyne (1991) modeled the
SiC fiber as a two- and three-layered microstructure with isotropic and transversely isotropic
sublayers in determining the residual stresses in SiC—Ti composites using a similar meth-
odology to that employed by Avery and Herakovich. In the above references, the matrix
was treated as elastic with temperature-independent properties.

The work by DiCarlo (1988), Wawner (1988), Lerch et al. (1988), and others indicates
that certain types of silicon carbide fibers used in SiC-Ti composites, such as the SCS6 fiber,
consist of at least five concentric isotropic and orthotropic layers, as illustrated in Fig. 1.
The core of the fiber is carbon surrounded by a thin layer of pyrolytic graphite. This is
followed by layers of short-grained and long-grained SiC material encased in an external
carbon-rich coating. [We note that a recent microstructural investigation of the SCS6 fiber
conducted by Ning and Pirouz (1991) indicates the presence of four distinct SiC regions.]
The external carbon coating itself is composed of sublayers with different proportions of
atomic elements. In order to be able to model such fiber microstructures, Sutcu (1992)
developed a recursive concentric cylinder model for the thermomechanical response of
composites, and used it to determine the thermal stresses in a SCS6 SiC/Ti-Al system. The
analysis was conducted assuming elastic, temperature-independent properties of the phases.

Still another microstructural detail that most recently has been incorporated into
various micromechanical models is the interfacial layer between the fiber and matrix phases.
Such a layer can arise naturally due to a chemical reaction at the fiber—matrix interface, or
is deliberately introduced to reduce residual stresses induced during the fabrication cool-
down. In the latter instance, the idea is to tailor the geometry, thermal and elastoplastic
properties of the interfacial layer in a way that reduces or “smooths out” the apparent
thermal expansion mismatch between the fiber and matrix phases. The utility of this concept
has been investigated by Arnold and co-workers (1990, 1992). Using the composite cylinder
micromechanics model and the finite-element approach, these authors studied the evolution
of residual thermal stresses in SiC-Ti;Al systems for different combinations of thermo-
elastoplastic properties of an interfacial layer. The feasibility of using a compliant or
compensating layer in reducing residual stresses at the fiber—matrix interface was dem-
onstrated, and the important parameters that govern the evolution of residual stresses in
the presence of such a layer were identified.

In this paper, an analytical solution to a micromechanics model for the thermoplastic
response of metal matrix composites is presented that is capable of efficiently accom-
modating various morphologies of layered fibers, such as silicon carbide, and different
architectures of interfacial layers within a unified framework. The solution is constructed
in a general manner that allows consideration of arbitrary fiber or interfacial layer con-
figurations without the need to resolve the problem for a particular material system. In
addition, the solution is extremely well suited for computer implementation. The presented
analytical solution thus facilitates not only efficient parametric studies necessary in the
course of developing new composite materials, but also design of engineered interfaces for
improved performance. Further, the presented solution can readily be incorporated into an
optimization algorithm in order to efficiently identify optimal configurations or mor-
phologies for given applications.

The micromechanics model is based on the concentric cylinder assemblage, consisting
of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic,
temperature-dependent properties, that is subjected to axisymmetric thermal loading. For
this type of loading, the model yields realistic distributions of stress and displacement fields
in the individual phases of a unidirectional composite away from the free edges, and thus
can be employed to identify potential failure modes that may become activated by the
residual stresses induced during fabrication cool-down. However, since the model is based
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Fig. 1. Microstructure of a SiC fiber [courtesy of Lerch ez al. (1988)].
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on axisymmetric stress fields, it cannot be used to predict interfacial failure near the free
edge of a composite caused by the axial shear stress. An analytical solution to the thermal
boundary-value problem of the concentric cylinder assemblage is obtained using the local/
global stiffness matrix formulation originally developed by Bufler (1971) for analysing the
response of multilayered, isotropic, elastic media. The application of this technique to
problems dealing with the elastic response of composite materials and structures has been
outlined by Pindera (1991). Derstine and Pindera (1989) used the method to solve the
problem of an arbitrarily laminated graphite/epoxy tube under axisymmetric loading using
the endochronic theory for the nonlinear response of the individual plies. Most recently,
Pindera and Freed (1992a) showed how this technique can be applied to axisymmetric,
elastoplastic, boundary-value problems in composite mechanics. The local/global stiffness
matrix formulation allows one to easily incorporate any number of concentric shells with
arbitrary elastoplastic properties into the concentric cylinder model, while reducing the
number of equations required to ensure continuity of interfacial tractions and displacements
between the adjacent layers.

The presented model is subsequently employed to illustrate the effects of the mor-
phology of layered SiC fibers and multiple compliant layers at the fiber—matrix interface
on the evolution of thermal stresses in SiC-Ti;Al composites during fabrication cool-down.
The use of multiple interfacial layers has been suggested by Arnold et al. (1990) as a way
of smoothing out the material property mismatch between the fiber and the surrounding
matrix phase in order to optimize thermal stresses at the fiber-matrix interface. The present
formulation facilitates modeling of the interfacial region as a region with spatially variable
properties in order to investigate the effect of property gradients on thermal stress fields.

ANALYTICAL MODEL

We consider a long, cylindrical assemblage consisting of an arbitrary number of
concentric cylinders or shells perfectly bonded to each other (Fig. 2). Each of the cylindrical
shells may be either elastic or inelastic. The elastic shells may be isotropic, transversely
isotropic, and radially or circumferentially orthotropic. The inelastic shells are taken as
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initially isotropic. It is assumed that all the material parameters governing the response of
the elastic and inelastic layers may be functions of temperature. Although the analytical
formulation is sufficiently general to admit time-dependent response of the individual layers,
only time-independent plasticity will be considered here.

A distribution of displacements and stresses in the individual phases of the concentric
composite cylinder model is sought under the conditions of a spatially uniform temperature
change that varies with time. A solution of the outlined elastoplastic boundary-value
problem is obtained using the displacement formulation. In what follows, the total strain
formulation of the governing differential equations is employed within the framework of
the so-called method of successive elastic solutions outlined by Mendelson (1983) for
elastoplastic boundary-value problems.

In solving the outlined boundary-value problem, the following notation is adopted.
The inner solid core is denoted by a subscript or superscript 1 and the outermost cylindrical
shell by n. The inner radius of the kth shell is denoted by r._, and the outer radius by r,.
The traction and displacement components at the inner and outer radii of the kth shell are
assigned superscripts “—"" and ““+ ", respectively.

For the prescribed axisymmetric loading, the longitudinal, tangential and radial dis-
placement components u, v and w, referred to the cylindrical coordinate system x—r—8
centered at the origin of the concentric cylinder assemblage have the form:

u=u(x) =gx, v=0, w=w(r)), (1)

where ¢, is the same uniform longitudinal strain for all layers. These displacement com-
ponents yield the following strain components in the cylindrical coordinate system :

du w(r) _ dw(r)

T = &0 &g = s rr

b = x r dr °’ @)

with the shear strain components identically zero. Since the strain components are either
constant or functions of only the radial coordinate r, the stress components are, at most,
functions of r, and so the stress equilibrium equations in cylindrical coordinates reduce to
the single equation:

do,,  0,—0g
e + = 0. 3)

The governing differential equation for the radial displacement w(r) in each shell is
obtained by expressing the stress components a,, and g4, in eqn (3) in terms of w(r) and its
gradient using stress—strain equations and strain—displacement relations given by eqn (2).
For problems in cylindrical coordinates, the stress—strain equations for an orthotropic
material in the presence of thermal loading and inelastic effects, and in the absence of shear
strains, are given by :

Oxx Cxx Cxo er Exx — Si):lx - axx(T_ T 0)
o9 ( = | CaoCos Coy |4 800 — €66 — o (T— To) ¢ - @
Gy er Cﬂr Crr & — 8;? - arr(T_ TO)

In the above, ¢,,, &, &, are total strains, &%, €. &2 are inelastic strains, and o, (T— T),
oge(T—Ty), a,,(T—T,) are thermal strains, with T, denoting a reference temperature and
T denoting the current temperature.

By introducing eqn (4) into the stress equilibrium equation [eqn (3)], and taking
advantage of eqn (2), the following differential equations for the distribution of the radial
displacement in the kth shell are obtained.
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Transversely isotropic, elastic layers (C.g = C,,, Cog = C,,, 0gg = 04,,)
d*w 1ldw w

e ——— ————— — ———  Iom . 5
dr2+rdr r? 0 (52)

Orthotropic, elastic layers

d? 1d 1C H (Cor—Cy, Cu—
w w 86 _;[( [} )8 + Z ( Cai)

T o Cat ¥ el To)] (sb)

—+ —w =
dr? rdr r*cC,
Isotropic, inelastic layers

G 1w 1
dr? " rdr r

L — 2y d n
C- g+ g T 20, (%)

i=x,0,r Crr i=x,6,r

where the distribution of the inelastic strains, & (r), is assumed to be known at the beginning
of each thermal load increment.
The solution to the above equations is obtained subject to the boundary condition

0,(r,) =0, ©
the interfacial displacement and traction continuity conditions
Wi 1(Fe—1) = wi(re—1), 0% '(rem 1) = ok (re— ), ¢

and the longitudinal equilibrium condition

f 6., dA4. =0, 8)
Ac

where A, is the cross-sectional area of the concentric cylinder assemblage.
Using standard techniques, solutions to the governing differential equations are
obtained in the following form.

Transversely, isotropic, elastic layers

A
w(r) = A,r+ —rz— (9a)
Orthotropic, elastic layers
— (CBx rx) (Cn Co; )
w(r) = A+ A,r '+ €0+ a;r(T—T,), 9b
( ) ! 2 (Crr COG) réo i= ;o r (Crr C99) ( 0) ( )

where 4 = (Cg/C,,) "2
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Isotropic, inelastic layers

1 ! (Cn + CS{)

AZ A ’
w(r) —A;r—i———;——%—i; L Z:@r “c er(ryr dr
rl’ (Crx Cﬂt l C ;
+ 2 Fr—y F xzer C ( ) 21 xz,(),rc " <r_-ul) (9C)

wherer,_, <r<r.

The above solutions contain unknown coefficients 4% and 4% for each layer, as well as
the unknown, uniform axial strain ¢,. For the solid core, the constant 4} vanishes since the
radial displacement at the center has to vanish. These unknown coeflicients are determined
from the boundary condition, interfacial traction and displacement continuity conditions,
and the longitudinal force equilibrium condition. Application of these conditions yields a
system of equations in the unknown 4% and 4% coefficients and the uniform longitudinal
strain g, that is solved iteratively when the inelastic strains are present. An iterative
procedure is required because the inelastic strains depend implicitly on the unknown
coefficients 4% and 4%. One such iterative procedure has been proposed by Mendelson
(1983) in the presence of plastic strains. This procedure will be employed in the present
analysis.

In order to automate the construction of this system of equations so that any arbitrarily
layered configuration can easily be considered, we reformulate the problem in terms of the
interfacial radial displacements as the basic unknowns in place of the coefficients 44 and
A% by using the concept of a Jocal stiffness matrix. The local stiffness matrix relates the
interfacial tractions at the inner and outer radii of the kth layer to the corresponding
interfacial radial displacements, and is obtained from the solutions to eqns (5a)—(5¢) [i.e.
eqns (92)—(9¢c)] in conjunction with the constitutive equations and strain—displacement
equations [eqns (4) and (2)]. To construct the local stiffness matrix for the kth layer, we
first express the coefficients 4% and A% in terms of the interfacial displacements w(r._;)
and w,(r;) by evaluating the solutions for the radial displacement component w(r) at the
appropriate locations. These expressions are then used in the equations for the radial stress
component in the kth layer given in terms of the determined radial displacement field. The
final step entails an evaluation of the radial stress in the kth layer at the inner and outer
radii in order to generate the radial tractions at those locations.

The form of the local stiffness matrix equation for the kth layer in the state of
generalized plane strain and in the presence of thermal and inelastic effects is

—a; ¢ ki kil W'} {kls}k { 1}" {gx}k
{ a;:} - [ku ku] {w+ U TR T g, 19
The thermal effects are represented by f% and f%, which are functions of the thermal
expansion coefficients for the kth layer. The plastic effects are represented by g% and g%,
which are given in terms of the integrals of the plastic strain distribution in the given layer.
The elements k%, ...,k%; of the local stiffness matrix are functions of the geometry and
elastic material properties of the kth layer (which may vary with temperature). These
elements are given in the Appendix for transversely isotropic and orthotropic, elastic layers,
and isotropic, inelastic layers. We note that the inelastic effects do not appear in the elements
k;;. This has certain advantages that will be pointed out later.
For the solid core, the coefficient 4} in eqns (9a)—(9¢) vanishes because the radial
displacement w; has to vanish, and so the relationship between the radial traction ¢\ (r,)
at the outer radius of the core and the corresponding radial displacement simplifies to:

* o= k3wt +kisee+f3(T—To)+gh an

Imposition of continuity of displacements and tractions along the common interfaces
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[egn (7)], together with the boundary condition on the radial stress at r, [eqn (6)], and the
longitudinal equilibrium condition specified by eqn (8), gives rise to a system of equations
in the unknown interfacial displacements. The continuity of interfacial stresses is guaranteed
by requiring that the sum of the tractions acting at the kth interface be zero, i.e.

o{‘cr++ _0"(':(+l)+=0, k=19""n_1’ (12)

whereas the continuity of interfacial displacements is directly enforced by requiring the
common interfacial displacement w, in the expressions for tractions given by eqn (10) to
be

Wi = W = Wiy 1. (13)

The system of equations is constructed by applying eqn (12) to each interface, starting with
the inner interface between the core and the first cylindrical shell, in conjunction with the
common interfacial displacements defined by eqn (13). This procedure yields the following
equations:

(k32 +kiDw, +kiwr+ (ki +ki)eo = —(fi+ DT —To)—(g2+93),
K iy + (K +RET Dwe+ K53 'y + (R + K83 Deg

= —(fA+fTYT-To) - (g +4iT"),
Ky iWa1 KW, + k5380 = —f5(T—To)— g5, (14)

where n is the number of cylindrical shells including the core. The remaining equation
necessary for the solution of the system of equations for the unknown interfacial dis-
placements w; and the axial strain g, is provided by the longitudinal equilibrium condition
[eqn (8)]. This yields:

(@22+@Tw (P + 5T Dwe - P3w, + Y Yo
k=1

= —ki Qk(T— To)"ki Hk, (15)

where ¢, ¢%,, ¥i, Q, and I, are also given in the Appendix.

The system of equations comprised of eqns (14) and (15) can be represented in the
matrix form shown below. We observe that the global stiffness matrix is constructed by
first superposing the local stiffness matrices along the main diagonal in an overlapping
fashion, and then adding a column and a row to account for the thermal effects and the
longitudinal equilibrium condition in the case of free thermal expansion/contraction. Under
the conditions of plane strain, g, vanishes and the (n+ 1)th row and column are not added
into the global stiffness matrix. It is a simple matter to construct a computer algorithm for
assembling the global stiffness matrix :

khk kL0 - khswkh| rw,
k3, k32 +ki, : W,
0 k3,
: ' - ko ks w,
b1+ 3 : P YUk £
[ fi+13) (gi+4%)
=— : v (T—T,) — < ) " (16)
5 )
Yo Y1,
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The outlined reformulation of the elastoplastic boundary-value problem for an arbi-
trary concentric cylinder assemblage using the local/global stiffness matrix approach has
the following advantages : automatic satisfaction of interfacial continuity conditions in a
pointwise fashion; reduction in the number of the boundary condition and continuity
equations by nearly 50% for large numbers of concentric cylinders ; and automatic assembly
of the global stiffness matrix, facilitating the addition of concentric cylinders without
additional effort. Furthermore, as the elements of the stiffness matrices for different types
of layers have been provided in closed form, the outlined thermal boundary-value problem
does not have to be resolved each time a particular concentric cylinder assemblage is
considered. Different configurations are efficiently handled by assembling the global stiffness
matrix in an appropriate fashion using the provided local stiffness matrices.

SOLUTION PROCEDURE

The system of equations given by eqn (16) is solved iteratively at each temperature
step for the specified loading after the manner suggested by Mendelson (1983). The iteration
is performed on the plastic force vector that consists of the elements g%, g% and X I1,. These
are expressed in terms of the integrals of the plastic strain distributions in the given layer
that have the form (see the Appendix):

* Z (CI‘C+C9!) (r,)r, dr’, k Z (Cn Cf)z)

et i=x8,r Crr . Fpi i=x,8,r Cr

d /
=N )

Since the elements of the global stiffness matrix at a given temperature are constant, only
one inversion of the matrix for each sequence of iterations is required. As the elements 1%,
¥ and X Q, of the thermal force vector are constant at a given temperature, most of the
computational effort lies in evaluating the integrals in eqn (17) at each iteration. The
algorithm for the iterative procedure is given in the sequel.
For the given temperature increment, the plastic strain distribution in each layer is
expressed in terms of the distribution at the preceding temperature plus an increment that
results from the imposed temperature change:

6,] (r)lcurrent = 8,] (r) 'prevnous +d8 (r) (]8)

The plastic strain increment is derived from the von Mises yield condition which, in the
presence of temperature-dependent elastoplastic properties of the matrix phase, has the
form

F=loj0,—16°¢", 1) = (19

where & is the effective yield stress, which is a function of both the effective plastic strain &°
and temperature. The plastic strain increment is thus,

dety = 2F g1 = o7, da, (20)
a3

where the proportionality constant d4 is obtained from the consistency condition for plastic
loading in the form
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oT
di= %G y 21
42090 , ,
90 a—gp'"*'aijDijklakl

P
07, D (dey —defh) + (a;jC;j -3 _U> dT

where dA > 0 for plastic loading, dA < 0 for neutral loading or unloading, and de}} are the
thermal strain increments given by

0u;(T)
or

where D, are the elastic stiffness elements, and Cj; = (0D, ,/0T)¢;;. In the present inves-
tigation, the elastoplastic stress—strain response of the matrix is taken to be bilinear so that
the slope of the effective stress—plastic strain curve, 6/0¢,, is constant at a given temperature.
Since the incremental theory of plasticity is used to calculate the plastic strain increment at
each point along the radial coordinate, the inelastic analysis is valid for both loading and
unloading in the plastic phases.

The plastic strain distribution in each layer is determined by calculating the plastic
strains at 21 stations after updating the plastic strains at these locations using eqn (18). The
current values for the plastic strains at these stations are then used in determining the
integrals given in eqn (17), and thus the elements of the plastic force vector in eqn (16).
Updated values of the interfacial displacements are then obtained using eqn (16). With a
knowledge of the interfacial displacements and the axial strain ¢,, the coefficients 4% and
A% in each layer can be obtained, producing solutions for the radial displacement w,(r)
from which radial and tangential total and plastic strains, and the corresponding stresses,
can be obtained. These are then used to obtain new approximations for the plastic strain
increments. The iterative process is terminated when the differences between two successive
sets of plastic strain increments are less than some prescribed value. The above procedure
is described in detail by Mendelson (1983).

APPLICATIONS

As an application of the outlined method, we investigate residual stresses in a concentric
cylinder consisting of a SCS6 SiC fiber surrounded by a layer of titanium matrix that is
subjected to a temperature change of -—792°C (Arnold et al., 1990). Two cases are
considered, namely, a layered fiber embedded in a homogeneous matrix, and a homo-
geneous fiber embedded in a matrix with a layered interface. In both cases, the outer radius
of the composite cylinder was normalized to 1.0, with the normalized fiber radius of 0.6320
producing a fiber volume fraction of 0.40. For the second case, the interfacial layer outer
radius was 0.6952, resulting in an interfacial volume fraction of 0.08.

The calculations were performed using temperature increments of AT = —1.39°C.
Convergence of plastic strain increments at the various radial locations typically did not
require more than 10 iterations at each temperature increment. As an additional check,
values of the effective stress calculated from the effective stress—plastic strain curve at
various radial locations were compared with values of the effective stress based on the
obtained stress components at these locations. Typically, differences were a fraction of a
percent. As a final check of the accuracy of the analytical solution, axial, circumferential
and radial stress profiles generated during the fabrication cool-down of a homogeneous
SiC fiber with a single interfacial layer embedded in a titanium matrix were compared with
the corresponding results obtained with the commercially available finite-element program
ABAQUS (1989). The material properties of the fiber and matrix phases used in the



1224 M.-J. PINDERA et al.

Table 1. Material properties of homogeneous SiC fiber and titanium matrix (Arnold et al.,

1990)
Material properties 24°C 200°C  425°C 600°C 650°C 815°C
Homogeneous SiC fiber
a(x10"¢cmem~'°C™ ) 3.53 3.62 3.87 4.19 4.28 4.5
Young’s modulus (GPa) 400.0 400.0 400.0 400.0 400.0 400.0
Poisson’s ratio 0.25 0.25 0.25 0.25 0.25 0.25
Ti-24Al-11Nb matrix
a(x10"¢cmem~'°C~ ") 9.0 9.36 10.26 10.53 10.62 11.07
Young’s modulus (GPa) 110.3 100.0 75.8 86.2 68.2 11.2
Poisson’s ratio 0.26 0.26 0.26 0.26 0.26 0.26
Yield stress (MPa) 371.5 406.7 370.2 290.9 269.5 165.5
Hardening slope (GPa) 22.98 3.04 2.22 1.29 0.67 0.00

calculations are given in Table 1. The elastoplastic and thermal properties of the interfacial
layer (with the exception of the Poisson’s ratio) were taken to be one half and two times
those of the matrix properties respectively, at each temperature. A quarter-symmetry
mesh was constructed that consisted of triangular (CGPES8) and quadrilateral (CGPE10),
generalized plane strain elements. A total of 580 elements was employed. The applied
boundary conditions modeled the axisymmetric thermal loading. Selected comparison of
the three stress components and the radial displacement at several radial locations in the
fiber, interfacial layer and matrix obtained with the present analytical solution and the
finite-element solution is presented in Table 2. Clearly, the differences are quite negligible.
A more detailed comparison will be presented elsewhere.

Case I: Effect of fiber microstructure on thermal stresses

As mentioned previously, SCS6 SiC fibers exhibit composite microstructures consisting
of a core surrounded by a number of cylindrical shells, with each region possessing generally
different properties. In this work, the SCS6 SiC fiber is modeled using five regions with
distinct properties. The inner carbon core (Region I in Fig. 1) is assumed to be isotropic,
the pyrolytic layer (Region II) circumferentially orthotropic, the silicon carbide regions
(Regions III and IV) radially orthotropic, and the outer carbon-rich coating (Region V)
isotropic or circumferentially orthotropic. The evolution of residual stresses is investigated
for a total of nine cases in view of the uncertainty associated with accurate determination
of the material properties in the individual layers. For the first six cases, a common set of
material properties is used in Regions I-1V, while one set of properties is used in the outer
carbon-rich coating or Region V for cases 1-3 and another set for cases 4-6. In cases 1-3
the outer carbon-rich coating is taken to be isotropic, whereas in cases 4-6 it is assumed to

Table 2. Comparison of stresses at selected radial locations generated by the prescnt

model and ABAQUS

Oxx Oy O, w(r)
Radial location (MPa) (MPa) (MPa) (x10~*mm™Y)
0.6320 (fiber)
Present model —546.00 —128.50 —128.50 —0.4323
ABAQUS —546.01 —128.49 —128.49 —0.4322
0.6320 (interfacial layer)
Present model 245.15 266.73 —128.50 —0.4323
ABAQUS 245.51 266.85 —128.26 —0.4322
0.6952 (interfacial layer)
Present model 264.87 251.01 —93.34 —0.9329
ABAQUS 265.32 251.21 —92.94 —0.9328
0.6952 (matrix)
Present model 334.91 243.98 —-93.34 —0.9329
ABAQUS 335.50 243.60 -93.14 —0.9328
1.0 (matrix)
Present model 391.72 179.80 0.00 —1.6304

ABAQUS 391.70 179.79 0.07 —1.6303
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be circumferentially orthotropic with the same properties as Region II. The remaining three
cases (cases 7-9) are based on material properties of a SCS6 SiC fiber used in an earlier
investigation (Pindera and Freed, 1992b) which are thought to be not as accurate as those
employed for cases 1-6. Irrespective of the actual properties employed in the calculations,
cases 1, 4 and 7 correspond to equal expansion coefficients of the two SiC layers in the
axial, radial and circumferential directions, while for cases 2, 5 and 8, and cases 3, 6 and 9,
the radial thermal expansion coefficient in the SiC layers is 25% greater and smaller,
respectively, than the thermal expansion coefficients in the axial and circumferential
directions.

The temperature-independent material parameters for the five different regions of the
SiC fiber used in cases 1-6 are given in Table 3(a), whereas the corresponding temperature-
dependent thermal expansion coefficients are given in Table 3(b). These properties are
based on data compiled by Lara-Curzio and Sternstein (1992a,b) and DiCarlo (1992), and
are thought to be the best properties for the individual regions of a SCS6 SiC fiber available
at the present time. The temperature-dependent thermal expansion coefficients of the SiC
regions (Regions III and IV) in Table 3(b) (cases 1 and 4) have been calculated using the
empirical formula provided by Li and Bradt (1986) given in the form

asic = 3.19x1076+3.6 x 107 °T—1.68 x 10~ '2T2(°C~ ).

The properties of the different regions of a SCS6 SiC fiber used for cases 7-9 are given in
Tables 4(a) and 4(b). As mentioned earlier, these properties are not as accurate as those
provided in Tables (3a) and 3(b), and are used here for parametric and illustrative purposes.
In particular, we point out that the two sets of properties given in Tables 3(a) and 3(b) and
Tables 4(a) and 4(b), respectively, differ significantly in the pyrolytic and outer coatings
(Regions IT and V). They are identical in the SiC regions (Regions ITI and IV) and somewhat
different in the carbon core (Region I).

The temperature-dependent material parameters of the titanium matrix used in the
calculations are the same as those given in Table 1. Included in the table are the properties
of the homogeneous SiC fiber employed by Arnold et al. (1990, 1992) in investigating the
effectiveness of a compliant/compensating layer in reducing residual stresses in the matrix
adjacent to the fiber-matrix interface. The results obtained, taking into account the SCS6

Table 3(a). Temperature-independent properties of different regions comprising a SCS6 SiC fiber, cases 1-6

Material properties Region It  Region IIt  Region 111} Region IV} Region Vt
E,, (GPa) 41.36 175.11 413.64 413.64 79.97/175.11
E, (GPa) 41.36 175.11 413.64 413.64 79.97/175.11
E,, (GPa) 41.36 6.89 482.58 579.10 79.97/6.89
Ver 0.24 1.875 0.19 0.19 0.30/1.875
Vio 0.24 0.036 0.25 0.25 0.30/0.036
Vo 0.24 0.075 0.19 0.19 0.30/0.075
o (X107 %cmem ™! °C™") 9.99 1.80 see Table 3(b)  see Table 3(b) 8.80/1.80
age (X107 %cm em~'°C~ 1) 9.99 1.80 see Table 3(b)  see Table 3(b) 8.80/1.80
o, (x107¢cmem="'°C™") 9.99 27.99 see Table 3(b)  see Table 3(b) 8.80/27.99
Normalized outer radius 0.2232 0.2512 0.4698 0.9580 1.0000

t After Lara-Curzio and Sternstein (1992a, b).
t After DiCarlo (1992).

Table 3(b). Temperature-dependent thermal expansion coefficients of Regions IIT and IV of

a SCS6 SiC fiber
a, (x10"¢cmem~'°C™") 24°C  200°C  425°C  600°C 650°C 815°C
Case 1 and 4: a,, = a,, = oyt 3.28 3.83 4.50 4.99 5.11 5.45

Case2and 5: a, = 1.250,, = 1.25a50  4.10 4.79 5.63 6.23 6.39 6.82
Case 3and 6: a,, = 0.75a,, = 0.75a5  2.47 2.88 3.38 3.74 3.83 4.09

tAfter Li and Bradt (1986).

SAS 30:9-F
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Table 4(a}. Temperature-independent properties of different regions of a SCS6 SiC fiber, cases 7-9

Material properties Region I  Region IIf  Region III} Region IV} Region V}
E,. (GPa) 27.58 220.61 413.64 413.64 27.58
Ey, (GPa) 27.58 220.61 413.64 413.64 27.58
E, (GPa) 27.58 27.58 482.58 579.10 27.58
Vir 0.20 0.25 0.19 0.19 0.20
Vyo 0.20 0.20 0.25 0.25 0.20
Yoo 0.20 0.25 0.19 0.19 0.20
o (X107 ¢emem™' °C™1) 5.58 0.27 see Table 4(b)  see Table 4(b) 5.58
g (X107 %cnem™' °C™ 1) 5.58 0.27 see Table 4(b)  see Table 4(b) 5.58
o, (x10 % emem=1°C™H 5.58 5.58 see Table 4(b)  see Table 4(b) 5.58
Normalized outer radius 0.2232 0.2512 0.4698 0.9580 1.0000

tAfter Pindera and Freed (1992b).

Table 4(b). Temperature-dependent thermal expansion coefficients of Regions III and IV of

a SC86 SiC fiber
o, (x10 %cmem™! °C™Y) 24°C  200°C 425°C 600°C 650°C 815°C
Case 7: a,, = &, = tgpT 3.53 3.62 3.87 4.19 4.28 4.50
Case 8: a,, = 1.25a,, = 1.25a4 4.41 4.52 4.84 5.24 5.35 5.62
Case 9: a,, = 0.75e,, = 0.750y 2.65 2.72 2.90 315 3.22 3.38

1 After Pindera and Freed (1992b).

SiC fiber’s microstructure, are compared with the results generated assuming the fiber to
be homogenecous.

The results for the axial, circumferential and radial stress distributions are presented
in Figs 3(a)—(c), 4(a)—(c) and 5(a)—(c), respectively, for all the considered cases. The letter
codes a, b and ¢ in the above figures denote cases 1-3, 4-6, and 7-9, for each of the three
stress profiles. The illustrated residual stress profiles indicate that the microstructure of the
SiC fiber has a substantial influence on the stress distribution in the individual layers of the
fiber, as suggested in the results obtained by previous investigators (Lekhnitskii, 1981;
Avery and Herakovich, 1986). In particular, we note that in contrast with the uniform,
negative, axial stress observed in the homogeneous fiber, the axial stress in the isotropic
carbon core is positive for all the considered cases [Figs 3(a)—(c)]. The relatively high tensile
stresses observed in the first six cases point to a potential failure of the carbon core for a
sufficiently large tensile deformation applied to the composite in the fiber direction. In fact,
given that the Young’s modulus of the carbon core is 41.36 GPa [Table 3(a)], and neglecting
stresses due to the Poisson’s effect, an axial strain of 1% will generate an axial stress of
413.64 MPa in the core, that, together with the initial residual stress may be sufficient to
fracture the core (McKee and Joo, 1972). For the last three cases, on the other hand, the
axial stress in the carbon core is quite low. For cases 1-6 [Figs 3(a)-(b)], the pyrolytic
coating is either in a state of axial compression or tension depending on the values of the
thermal expansion coefficients in the SiC layers and the outer coating, while the axial stress
distribution in the slightly radially orthotropic SiC layers depends on the thermal expansion
coefficients in those layers. When the three coefficients are equal (cases 1 and 4), a nearly
uniform distribution is observed. When the radial coefficient is greater than the remaining
two (cases 2 and 5), the axial stress increases towards the core, whereas a decrease is
observed when the radial coefficient is smaller (cases 3 and 6). The axial stress in the outer
coating is positive for cases 1-3 and negative for cases 4-6. For cases 7-9 [Figure 3(c)], the
pyrolytic coating is in a state of high axial compression regardless of the values of the
thermal expansion coefficients in the SiC layers, while the axial stress distribution in the
slightly radially orthotropic SiC layers follows the same trends observed in cases 1-6. The
axial stress in the outer carbon coating is positive for cases 7-9 and small in magnitude in
comparison with cases 1-6.

Similar trends are observed for the hoop stress distribution [Figs 4(a)—(c)]. In this case
however, the distribution of the hoop stress within the SiC layers for cases 1-6 [Figs 4(a)—
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(b)], is substantially more nonuniform in comparison with the corresponding axial stress
cases [Figs 3(a)—(b)]. The large tensile values of the hoop stress in the outer carbon coating
observed for cases 1-3 in Fig. 4(a) indicate a potential initiation site for radial microcracking.
In fact, radial microcracks in the outer carbon-rich coating have been reported by Brindley
et al. (1990) and MacKay et al. (1991). On the other hand, if the properties of the outer
coating are the same as those of the pyrolytic layer with a large thermal expansion coefficient
in the radial direction, a desirable compressive hoop stress develops in the outer coating as
observed in Fig. 4(b) for cases 4-6, thereby removing the driver for radial cracking in this
coating. For cases 7-9 [Fig. 4(c)], the variation of the hoop stress in the SiC layers with the
thermal expansion coefficient is also much greater than in the corresponding axial stress
case [Fig. 3(c)], while in the outer carbon coating the hoop stress is tensile and relatively
small.

<

1 I I & IV Marrix

1100 - Residual stress

— cose 1
<1300 1 -0~ case 2

o 5 case 3
{~-&— homogeneous SIiC fiber

(a) 1500 ; ; ; ;
0.0 02 04 08 0.8 10

Radlal distance

I 1I Ni&1v v Matrix

l [ |

1100 4 Residual stress

L case 4
-1300 -0~ case §

|- case 6
-%—homogenecus SIC fiber

(b) 1500 ; ' ; ;
0.0 0.2 0.4 0.6 0.8 1.0

Radial distance

Fig. 3. The effect of fiber morphology on the axial stress in a concentric cylinder due to
AT = —792°C: (a) cases 1-3; (b) cases 46 (c) cases 7-9.
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Fig. 3 (continued).

The radial stress distributions shown in Figs 5(a)—(b) for cases 1-6 indicate that the
magnitude of the radial stress in the SiC layers directly adjacent to the outer carbon coating
is affected by the thermal expansion coefficient of the outer coating. In particular, the stress
profiles are shifted up, producing smaller magnitudes of compressive radial stress in the
outer SiC layers when the outer coating has a high thermal expansion coefficient in the
radial direction (cases 4-6). The form of the stress distribution, however, remains similar
in both sets of cases, increasing monotonically with decreasing radial coordinate in the
inner SiC region. Within each set of cases, the distribution of radial stresses in the SiC
regions increases uniformly (i.e. shifts up) with increasing thermal expansion coefficient in
that region. Relatively large differences are observed in the radial stress magnitudes in the
SiC layers for the different values of the radial thermal expansion coefficient. In the vicinity
of the carbon core, the largest radial stress is generated when the radial thermal expansion
coefficient in the SiC regions is highest (cases 2 and 5). The relatively large tensile stresses
observed at the interfaces separating the inner core from the pyrolytic coating, and the
pyrolytic coating from the SiC regions, point to a potential debonding of these interfaces
during either cool-down or upon tensile loading, given the poor radial properties of the
circumferentially orthotropic pyrolytic coating and the large Poisson’s ratio v,,. We note
that if debonding were to take place between the carbon core and/or pyrolytic coating and
the surrounding material during cool-down or subsequent tensile loading, the initially high
residual axial stresses in the carbon core would relax, eliminating the possibility of failure
in the core. In contrast with the first six cases, the radial stresses in the vicinity of the carbon
core for cases 7-9 are either quite low or compressive as observed in Fig. 5(c). The general
form of the radial stress distributions throughout the various fiber regions for these cases,
however, is similar to the distributions observed in the preceding cases.

Perhaps the most important result gained from the data presented in Figs 3-5 is the
observation that the microstructure of the SiC fiber has little effect on the elastoplastic
stress distribution in the matrix phase for the range of the employed material parameters.
From the point of view of radial cracking susceptibility at the fiber—matrix interface, the
circumferential stress component g4 plays the most important role. Figures 4(a)—(c) illus-
trate that the reduction in the circumferential stress depends on the thermal expansion
coefficient of both the SiC regions and the outer carbon coating. Within each of the three
sets of investigated cases, the biggest reduction in the circumferential stress in the matrix
phase is obtained when the radial thermal expansion coefficient «,, in the SiC regions is
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25% greater than the longitudinal and circumferential thermal expansion coefficients,
denoted by cases 2, 5 and 8 in the figures. This is clearly consistent with the physics of
the deformation in the presence of constraining layers, and is further borne out by the
corresponding reduction in the radial stress profile illustrated in Figs 5(a)-(c). The biggest
reduction in the hoop stress for all the cases occurs for case 5 [Fig. 4(b)], when the radial
thermal expansion coefficient of the outer carbon coating is very large in relation to that of
the matrix. In this case, the outer coating acts as a compensating layer, as suggested by the
results of Arnold et al. (1990, 1992), resulting in a further decrease of the matrix hoop
stress. Clearly, however, the reductions in g4 of the matrix are quite modest for all the
considered cases. It appears that a substantially greater increase in either the radial thermal
expansion coefficient of the SiC layers (for cases 2, 5 and 8), or the thickness of the
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Fig. 4. The effect of fiber morphology on the hoop stress in a concentric cylinder due to
AT = —792°C: (a) cases 1-3; (b) cases 4-6; (c) cases 7-9.
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Fig. 4 (continued)

outer carbon coating (for cases 4-6), is required to produce a significant reduction of the
circumferential stress in the matrix phase at the fiber-matrix interface.

Case 11 : Effect of interfacial layer morphology on thermal stresses

The work of Arnold ez al. (1990, 1992) indicates that the most important interface layer
parameters for reducing the matrix inplane stresses are the thermal expansion coefficient and
the thickness of the layer. The thermal expansion coefficient should be chosen such that
o > g™ and the thickness of the compliant layer should be as large as other con-
siderations allow. For a given thickness of the interfacial layer, the matrix hoop stress
decreases with increasing thermal expansion coefficient of the layer, suggesting that o™
should be as large as possible in relation to «™*, However, the reduction in the matrix
hoop stress is accompanied by an increase in the interfacial layer hoop stress itself. In fact,
the interfacial layer hoop stress may exceed that in the matrix phase above a certain value
of o', potentially resulting in radial cracking in the interfacial layer itself. Elastic and
inelastic properties of the interfacial layer appear to play a secondary role as far as the
matrix inplane stresses are concerned. Since the results of Arnold ez al. (1990, 1992) indicate
that increasing the thermal expansion coefficient of the interfacial layer decreases the inplane
stresses in the matrix at the expense of larger hoop stresses in the interfacial region, we ask
whether grading the thermal expansion coefficient of the interfacial region using multiple
layers offers any advantages over the use of a single interfacial layer with regard to
optimizing hoop stresses in both the interfacial layer and the matrix phase. To answer this
question, we consider the cases of two and three interfacial layers with different thermal
expansion coeflicients lying between two values, and compare the resulting stress dis-
tributions with those generated in the presence of a single interfacial layer with the two
extremal thermal expansion coefficients.

The temperature-dependent material parameters of the fiber and matrix phases of the
SiC-Ti,Al composite used in the calculations are given in Table 1. The elastic and inelastic
properties of the interfacial layers (excluding the Poisson’s ratios) were taken to be one half
of the corresponding matrix properties at each temperature. This choice is motivated by
the observation of Arnold ef al. (1990) that the elastic and inelastic properties of the
interfacial layer should be as small as possible relative to those of the matrix as regards
minimization of overall residual stress state. The thermal expansion coefficients of the
interfacial layers were chosen in the following manner. First, stress distributions for single
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interfacial layers having thermal expansion coefficients two and three times that of the
matrix phase were generated independently. Those are indicated by open and solid circles
in the figures that follow. Next, stress distributions in the presence of two interfacial layers
were generated with each layer having thermal expansion coefficients two and three times
that of the matrix phase. Finally, stress distributions were obtained in the presence of three
layers, with the individual layers having thermal expansion coefficients of two, two and one
half, and three times that of the matrix phase.

Figure 6 presents the hoop stress oy, distributions in the fiber, interfacial layer(s) and
the matrix phase for the cases of zero, one, two and three interfacial layers. In the cases of
multiple interfacial layers, the thermal expansion coefficients were graded in a monotonically
increasing manner from the inner to the outer interfacial layer. Inverting this grading
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Fig. 5. The effect of fiber morphology on the radial stress in a concentric cylinder due to
AT = —792°C: (a) cases 1-3; (b) cases 4-6; (c) cases 7-9.
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Fig. 5 (continued).

sequence reverses the stress distribution in the interfacial region without significantly affect-
ing the stress distribution in the matrix phase. The results presented in the figure clearly
indicate a reduction in the matrix hoop stress in the presence of a single interfacial layer
with an increasing thermal expansion coefficient for the layer as discussed by Arnold e? al.
(1990). It is seen that beyond a certain value of the thermal expansion coefficient for the
interfacial layer, however, a reduction in the matrix hoop stress is accompanied by an
increase in the interfacial layer hoop stress as also pointed out by the above authors. The
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Fig. 6. The effect of interfacial layer morphology on the hoop stress in a concentric cylinder due to
AT = —792°C.
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use of multiple interfacial layers, on the other hand, tends to modulate to a certain extent
the stresses in the interfacial region. It appears that a more advantageous hoop stress
distribution in the interfacial region can potentially be obtained by grading the thermal
expansion properties, albeit at the expense of an increase in the matrix hoop stress. The
hoop stress distribution in the matrix phase in the presence of two and three interfacial
layers is bounded by the stress distributions for the single interfacial layers. Virtually no
difference in the matrix hoop stress distribution is observed when two or three interfacial
layers are present. It is interesting to note that the hoop stress distribution in the matrix
phase is not significantly different from the one obtained with two or three interfacial layers
if a single interfacial layer with the average value of the thermal expansion coefficient is
used, i.e. thermal expansion coeflicient two and one half times that of the matrix phase.
The hoop stress in the interfacial region, in this case, is approximately the average of the
hoop stress obtained with the two or three interfacial layers. This suggests that in some
situations a single interfacial layer may be sufficient to optimize residual stresses, thus
eliminating the additional cost of depositing multiple interfacial layers.

The corresponding results for the axial stress o, distributions are illustrated in Fig. 7.
For this component of stress, the presence of an interfacial layer results in an increase of
the matrix axial stress at the fiber-matrix interface and a decrease in the outer region.
Multiple interfacial layers produce potentially more desirable stress distributions in the
interfacial region only, and without offering any advantage over the single interfacial layer
with regard to the matrix axial stress distribution. As in the preceding case, a single
interfacial layer with the average thermal expansion coefficient produces virtually the same
axial stress in the matrix phase and an average stress profile in the interfacial region
compared to the multiple layers. Similar conclusions can be drawn from the resuits for the
radial stress distributions presented in Fig. 8. Here however, the presence of an interfacial
layer results in a decrease in the radial stress distribution throughout the entire region of
the concentric composite cylinder. The lowest stress profile is obtained for the single
interfacial layer with the highest thermal expansion coefficient. The two and three interfacial
layers produce virtually identical stress distributions, which are bounded by the distributions
obtained for the single layer cases. Virtually the same distributions are obtained for a single
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Fig. 7. The effect of interfacial layer morphology on the axial stress in a concentric cylinder due to
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Fig. 8. The effect of interfacial layer morphology on the radial stress in a concentric cylinder due
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interfacial layer with the average thermal expansion coefficient both in the matrix phase
and the interfacial region compared to the multiple layers.

CONCLUSIONS

An efficient method has been outlined for the determination of thermoplastic response
of metal matrix composites based on the concentric cylinder geometry. The method is an
extension of the local/global stiffness matrix formulation for layered media that has pre-
viously been applied to elastic problems. Closed-form expressions have been provided for
the local stiffness matrices of isotropic, transversely isotropic and orthotropic layers, in the
presence of thermal and inelastic effects. These expressions can be quickly programmed
and a simple algorithm for assembling the global stiffness matrix can be constructed for
any arbitrarily layered concentric cylinder assemblage. This eliminates the need to resolve
the basic problem of a layered concentric cylinder assemblage for the particular geometry
under consideration.

The versatility of the method has been illustrated by investigating the effects of fiber
and interfacial layer morphologies on the thermally-induced, residual stresses in SiC-Ti,Al
composites. The results indicate that the layered microstructure of the SiC fiber has little
effect on the residual stress distributions in the matrix phase of a SiC-Ti composite for the
considered fiber volume fraction and material parameters. The stress profiles in the indi-
vidual layers of the SiC fiber however, are substantially different than the corresponding
profiles in a homogeneous SiC fiber embedded in the same matrix material. The layered
microstructure of the SiC fiber does not produce substantially different effective properties
of the “composite” fiber under axisymmetric thermomechanical loading from those of a
homogeneous SiC fiber. The matrix, therefore, sees very little difference in the constraint
provided by the homogeneous and layered SiC fiber during thermal loading. Consequently,
the stresses at the fiber—matrix interface are not substantially different. On the other hand,
the resulting stress profiles in the individual layers of the SiC fiber do depend to a large
extent on the degree of orthotropy of the layers’ thermal expansion coefficients and elastic
moduli. For example, the choice of material properties for the outer carbon coating can
significantly affect the hoop (and longitudinal) stresses in that region, either accelerating
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or delaying radial microcracking. Relatively large longitudinal, tensile stresses also may be
present in the carbon core after cool-down, potentially leading to fracturing of the carbon
core at moderate axial deformations. Large tensile, radial stresses at the carbon core
interface observed for certain combinations of material properties of the SiC fiber regions
point to a potential debonding of the carbon core and/or the pyrolytic coating from the
remaining fiber annulus during cool-down or upon tensile loading. Further, a variation in
the thermal expansion coefficient in the SiC layers of the order of 25% is sufficient to
produce a substantially different stress distribution in these layers for certain combinations
of material properties. As a result, accurate knowledge of the properties of the different
regions in the SCS6 SiC fiber is indispensible for both the modeling and material devel-
opment efforts.

With regard to the use of multiple interfacial layers, the results indicate that, for the
considered material system, grading the thermal expansion properties of the sublayers in
the fiber-matrix interfacial region, while keeping all the other properties constant, produces
no reduction of the inplane residual stress distribution in the matrix phase, as compared to
the inplane stresses induced by a single interfacial layer with the higher thermal expansion
coefficient. In fact, introducing additional interfacial layers with a smaller thermal expansion
coefficient than the thermal expansion coefficient of a single interfacial layer actually
increases the inplane residual stresses in the matrix phase over those generated in the
presence of the single interfacial layer. Similarly, the axial residual stresses at or near the
fiber—matrix interface are not relieved by the interfacial layers. The use of multiple interfacial
layers, however, has a potentially beneficial effect on the stress distribution in the interfacial
region itself.

Further, the work of Arnold et al. indicates that the influence of elastic and inelastic
properties of the interfacial region is most dominant when attempting to reduce the stress
distribution in that interfacial region without significantly affecting the matrix stresses. This
suggests that the use of multiple interfacial layers may offer some advantages over single
interfacial layers if both the thermal expansion properties, together with the elastic and
inelastic properties, are graded. Grading in this case has the potential to reduce the generally
high stresses in the interfacial region when compensating layers are used, thus preventing
premature failure. This issue will be addressed in future investigations.
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APPENDIX

The local stiffness matrix elements of transversely isotropic and orthotropic, elastic cylindrical shells, as well
as isotropic, inelastic cylindrical shells for axisymmetric, generalized plane strain problems in polar coordinates
are given below. For transversely isotropic, elastic and isotropic, inelastic shells with the r—8 plane of isotropy we
have:

Elastic contributions

[(Co+Cre1 = (Co,— C)rilre1)

ky =
7_,2 ,
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T Ty
ki3 = —Cy,

ka3 = Cy,
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For orthotropic, elastic shells we have
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